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The unsaturated porous solid

The unsaturated solid

An unsaturated solid is a porous medium
whose porosity is filled by more than one
distinct phase:

drying rock/wet sand. . .→ air and
water
freezing/thawing rock → water and ice
oilfield → oil, water and gas
. . .

What are the changes induced in the poroelasticity and the transport laws by the
presence of these multiple phases ?
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The unsaturated porous solid

Surface energy

A molecule at an interface has a higher energy than a molecule in the bulk (less
stabilizing interactions). We can then define a surface energy γ defined as half the excess
energy obtained by dividing an homogeneous solid in 2 parts creating a surface.

dW = 2γdA
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The unsaturated porous solid

Surface stress and surface energy

For a fluid surface as the molecule are
mobile any change of the surface area leads
to a change of the number of molecules at
the surface.

For a solid surface, any change of area
corresponds to a stretching of the bonds at
a constant number of molecules.

Surface energy ⇔ Surface stress Surface energy 6= Surface stress

Shuttleworth equation: γ∗ = γ + dγ
dε

dε = dA
A is called the surface strain
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The unsaturated porous solid

Wettability and contact angle

Young-Dupré law

We can define the spreading parameter as S = γGS − (γLS + γGL).

If S > 0 the liquid will wet the surface (energetically favorable) and we will be in the case of perfect
wetting.
If S < 0 the quality of wetting can be characterized by a contact angle following Young-Dupré law

γGS = γLS + γGL cos θ
The demonstration of this law is made with the projection of surface forces on the triple line (the line where all
phases are in contact)
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The unsaturated porous solid

Wettability of natural rocks

Water-wet/oil-wet
Aqueous solutions and oil products don’t have the same behavior with solids.
Water has a high surface energy (≈ 70 mJ/m2) because of the hydrogen bonds
Organic products (made from carbon chains, alcanes. . . ) have a low surface tension
(London interaction)

Water-wet and Oil-wet
Some solids will be wet by aqueous solutions (water-wet or hydrophilic) and others will
be wet by organic compounds (oil-wet or hydrophobic). A same solid cannot be wet by
the two kinds of liquids, but a same solid can be non-wet for both (Teflon products)
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The unsaturated porous solid

Wettability of natural rocks

Ususally natural rocks are water-wet
Natural rocks are formed by minerals which are water-wet so most of the natural rocks
are water-wet.
For a rock in contact with oil and petroleum products, adsorption of molecules
(asphaltenes) can make them oil-wet.

Wettability of a natural rock is difficult to measure
Impossible to measure with the contact angle technique

Roughness of the surface
Presence of the pores

Need to rely on capillary pressure measurements (Amott and USBM index)
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The unsaturated porous solid

Laplace law

Let us consider a spherical bubble in water with a surface tension γ and a radius R.
The work needed for a change of radius from R to R + dR is:
dW = − (pin − pout) dV + γdA⇒ pout − pin = 2γ

R

Extension of the Laplace law
For any curved interface between two fluids, the difference of pressure across the
interface is expressed as:

p1 − p2 = γκ p1 − p2 = γ
(

1
R1

+ 1
R2

)
with κ the curvature of the interface or R1 and R2 the principal radii of curvature (The higher pressure is the
one toward the concavity).
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The unsaturated porous solid

Capillary rise, Jurin’s law

When a capillary tube is put in water one can observe a rise of water in the capillary at a
precise height

Competition between gravity and pressure forces. At the meniscus, P1 = Patm − 2γ
R with

R the radius of curvature.
At equilibrium we then have: Patm = Patm − 2γ

R + ρgh. If θ is the contact angle, R = r
cos θ

The capillary rise is then: h = 2γ cos θ
rρg

The smaller the capillary tube, the more important capillary effects are.
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The unsaturated porous solid

Phase saturation

Ω Total volume of the sample
Vw Volume of the blue phase
Vnw Volume of the orange phase
Vpores Volume of pores (blue + orange)
Ω− Vpores Volume of the solid matrix

Let us consider a rigid porous solid (no deformation) filled with two phases which we will
call wetting (w) and non-wetting (nw).
A fraction of the porosity is occupied by the wetting fluid while the rest is filled by the
non-wetting one.
We will call saturations S the quantities Sw = Vw

Vpores
and Snw = Vnw

Vpores
.

We have Sw + Snw = 1

In terms of porosity, Sw = φw
φ

and Snw = φnw
φ

with φw and φnw the porosity occupied
respectively by the wetting and the non-wetting fluid
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The unsaturated porous solid

Capillary pressure and phase saturations

In absence of mechanical deformation and chemical reactions, we have:
dF = µwdnw + µnwdnnw

Expressing the Helmholtz free energies of the wetting and the non-wetting fluid as
dFi = µidni − pidVi and using the additivity of state variables dF = dFnw + dFw + dF surf ,
we have the expression for the Helmholtz free energy stored in the pores because of
capillary effects:

df surf = − (pnw − pw ) dSw with df surf = dF surf /Vpores

Capillary pressure is then defined as pnw − pw

pc = −df surf
dSw

Capillary pressure is the intensive variable associated with the wetting fluid saturation
and is then a function of Sw .
The curve pc = f (Sw ) is called Retention curve and is specific of the porous solid
considered.
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The unsaturated porous solid

Typical retention curve

van Genuchten semi-empirical
relation

pc = p0(T )
(
[S∗]−1/m − 1

)1−m

with S∗ = Sw−Swr
1−Swr

Swr is called the residual
wetting fluid saturation

The air (or non-wetting fluid) entry pressure p0 is the minimal pressure when a sample starts to
desaturate
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The unsaturated porous solid

Drainage

Drainage is the injection of non-wetting fluid in a wetting fluid saturated porous medium
Imbibition is the injection of wetting-fluid in a non-wetting fluid saturated porous medium
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The unsaturated porous solid

Capillary pressure and pore size

Infinitesimal invasion of the non-wetting fluid

dW = − (pnw − pw )πr2dx + (γnw − γw ) 2πrdx
At equilibrium pnw − pw = 2(γnw−γw )

r = 2γnw/w cos θ
r using Young-Dupré

The definition of capillary pressure is consistent with Laplace law

We have γnw > γw (with Young-Dupré)

Capillary pressure is always positive: the wetting fluid pressure is always smaller than the
non-wetting one (because of the orientation of the curvature).
If the wetting phase is continuous the capillary pressure is homogeneous in the whole
sample. If the wetting fluid saturation goes below a critical value the wetting phase
becomes discontinuous and the capillary pressure becomes a local quantity depending on
the meniscii (pc = f (Sw )) is no longer true.
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The unsaturated porous solid

Retention curve and pore size

Let us consider the drainage of a porous medium by increasing steps by steps the
capillary pressure (i.e. increasing the non-wetting fluid pressure).
⇒ Sw decreases and pc = 2γnw/w cos θ

r .
An increase of the capillary pressure leads to an decrease of the radius the non-wetting
fluid is able to penetrate.

If we consider a bundle of capillary tubes, we can relate the capillary pressure to the
transition pore:
smaller diameter → filled with wetting-fluid
bigger diameter → filled with non-wetting fluid
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The unsaturated porous solid

Imbibition, drainage and hysteresis

If we try to measure the capillary curve during drainage and imbition, we observe a
strong hysteresis
The modeling of pores as a bundle of capillary tubes cannot explain this hysteresis !
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The unsaturated porous solid

Capillary hysteresis

To model the capillary hysteresis we need to consider the model of the spherical pores
with cylindrical pore throats
This is called the bottleneck effect
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The unsaturated porous solid

Mercury Intrusion Porosimetry

Mercury Intrusion Porosimetry (MIP) is a widely used technique to get the pore size
distribution (PSD) of a sample

AutoPore IV Micromeritics

Penetrometer (Micromeritics)
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The unsaturated porous solid

Mercury Intrusion Porosimetry

Principle
A small chunk of the sample is put inside the penetrometer. The system measures then
the quantity of mercury injected at each pressure step.
Mercury is non-wetting for all materials ( γ = 485 J.m−2).

The derivative of the cumulative intrusion volume gives give the pore size distribution.
For natural rocks there is usually one or two main peaks corresponding to the main
families of pores.
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The unsaturated porous solid

Unsaturated poromechanics
Porosity and saturation change during deformation

We have defined the saturations as SJ = φJ
φ0

Let us extend the definition to porous solids subjected to deformation (the best way to do this is
to keep a Lagrangian definiton):
We can decompose the porosity after deformation as : φJ = SJφ0 + ϕJ
The fluid saturation is then : SJ = φJ−ϕJ

φ0
and we still have

∑
J SJ = 1 and

∑
J φJ = φ

The total deformation of the solid is ϕ = φ− φ0 =
∑

J ϕJ
dϕJ = φ0dSJ − dφJ
During a deformation, the porosity and the saturation of the solids change. ϕJ represents the
deformation of the volume initially occupied by the fluid J.
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The unsaturated porous solid

Unsaturated poromechanics

The variation of Helmholtz free energy for an unsaturated solid without deformation is:
df = pwdφw + pnwdφnw +

∑
i µidi − sdT

Taking into account the deformation, the Helmholtz free energy of the skeleton becomes:
dfsk = σdε+ pwdφw + pnwdφnw + s : de − sskdT

dfsk = σdε+ pwdϕw + pnwdϕnw + s : de − sskdT − φ0 (pnw − pw ) dSw

The skeleton is the porous solid without the bulk fluids. The matrix/fluid and fluid/fluid
interfaces belong to the skeleton. We can then divide fsk in to parts: the free energy of
porous solid without interfaces, and the free energy of interfaces.

fsk = f ∗
sk

(
ε, ϕnw , ϕw , e, Sw ,T

)
+ φ0U (Sw )

We assume that U depends only on Sw and not on the deformation of the sample. It
means that the interfacial energy does not affect the deformation of the sample.
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The unsaturated porous solid

Unsaturated poromechanics

Capillary pressure as a function of the interfacial energy

Thanks to the decomposition of fsk , we have: φ0 (pnw − pw ) = − ∂f ∗
sk

∂Sw − φ0
dU
dSw

If we consider that for infinitesimal deformation, the impact of deformation on the
capillary curve is negligible, we have: :

pnw − pw = − dU
dSw

We find again the expression we had derived for the capillary curve without deformation.

Using Legendre transform dψsk = df ∗
sk − pnwdϕnw − pwdϕw

dψsk = σdε− ϕnwdpnw − ϕwdpw + s : de

σ = ∂ψsk
∂ε

φJ = − ∂ψsk
∂pJ

sij = ∂ψsk
∂eij
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The unsaturated porous solid

Unsaturated poromechanics

Again, by identification, we obtain:
σ = Kε− b1p1 − b2p2

ϕ1 = b1ε+ p1/N11 + p2/N12 Maxwell relations giving N12 = N21

ϕ2 = b2ε+ p1/N12 + p2/N22

sij = 2Geij

The stress and strain partition reads then:
σ = (1− φ0)σsk − φ0S1p1 − φ0S2p2

ε = (1− φ0) εsk + φ1 + φ2
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The unsaturated porous solid

Unsaturated poromechanics

If we fill the solid with only one fluid, we should retrieve the equations in the saturated
case
p1 = p2 and ϕ1 + ϕ2 = ϕ
⇒ b = b1 + b2 1/N11 + 2/N12 + 1/N22 = 1/N

Let put the solid in a bulk of one fluid: σ = −p and p1 = p2 = p
Similarly to what we did in the saturated case:
ε = ϕJ

φ0
SJ = εsk = − p

Ksk

1/N11 + 1/N12 = b1−φ0S1
Ksk

1/N22 + 1/N12 = b2−φ0S2
Ksk
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The unsaturated porous solid

Bishop parameter

Let us consider two fluids in the porosity
We have b1 + b2 = b
We can then introduce χ such as : b1 = χb and b2 = b (1− χ) (1 is the wetting fluid
and 2 is non-wetting)

χ should depend on all parameters but we make the assumption that χ(Sw ).

If we consider that the pores filled with 1 and 2 are deforming the same way (pores
iso-deformation), we can write that:

1
φ0S2

∂ϕ2
∂ε

∣∣
(p1,p2)

= 1
φ0S1

∂ϕ1
∂ε

∣∣
(p1,p2)

χ = S1 ⇒ b1 = S1b and b2 = S2b

One has to remember that it is usually not the case
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The unsaturated porous solid

Transport in unsaturated porous media
Occupation of space and wettability

Let us consider the case where capillary forces are dominant

The capillary number is defined as : Ca = vinjectedηinjected
γnw/w

.
If Ca � 1, capillary forces are dominant, and if Ca� 1, viscous forces are dominant.

From Anderson 1987

Imbibition case
The wetting fluid is on the wall. Some globules of non-wetting fluid can be trapped when the
wetting fluid snaps-off at pore throats
At the breakthrough, some oil is trapped as globules or as large patches of oil extending over
several pores
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The unsaturated porous solid

Transport in unsaturated porous media
Occupation of space and wettability

Let us consider the case where capillary forces are dominant

The capillary number is defined as : Ca = vinjectedηinjected
γnw/w

.
If Ca � 1, capillary forces are dominant, and if Ca� 1, viscous forces are dominant.

From Anderson 1987

Drainage case
The non-wetting fluid can only penetrate the largest pores as fingers.
At the breakthrough, the wetting fluid is in the smaller pores, as a continuous film on the pore
wall and as large pockets trapped between the fingers
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The unsaturated porous solid

Transport in unsaturated porous media
Residual saturation

At some point during the injection process, only the injected fluid is produced. The
displaced fluid has reached its residual saturation (in oil & gas industry it is often called
irreducible saturation)

The residual saturation depends on the wettability of the medium and on the type of
injection

From Anderson 1987
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The unsaturated porous solid

Transport in unsaturated porous media
Extension of Darcy’s law

Darcy’s law for saturated porous media v = k
η
∇p.

Modification of Darcy’s law: relative permeability
Each fluid transport can be described with an extended Darcy’s law:
vw = kkwr (Sw )

ηw
∇pw

vnw = kknwr (Sw )
ηnw

∇pnw

The relative permeabilities depend on the fluid saturation: the higher the fluid content,
the easier the fluid can move in the porosity. 0 < kw

r , knw
r < 1

Mobility ratio : r = kwr
knwr

ηnw
ηw

.
If r > 1, the wetting fluid is moving more easily than the non wetting one.

Relative permeabilities are very complex quantities, depending on the wettability of the
medium, the history of saturation, the connectivity of pores, the pore size distribution . . .
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The unsaturated porous solid

Transport in unsaturated porous media
Relative permeabilities

Source: Stanford University

High wetting saturation
The mobility of the wetting fluid is higher
than this of the non-wetting fluid
→ wetting fluid present in the small and a
part of the big pores

Low wetting saturation
At some point the mobility of the
non-wetting fluid becomes higher than the
wetting one
→ the wetting fluid moves in the small
pores while the non-wetting one moves in
the big pores.
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The unsaturated porous solid

Transport in unsaturated porous media
Relative permeabilities

Source: Stanford University

Semi-empiric relations for relative
permeabilities

van Genuchten/Mualem

kw
r =

√
S∗
(
1−

(
1− [S∗](1/m)

)m)2
S∗ = Sw−Swr

1−Swr

Corey

knw
r =

(
1− S2

h
)

(1− Sh)2
Sh = Sw−Swr

1−Swr−Snwr
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The unsaturated porous solid

Transport in unsaturated porous media
Hydrodynamic regimes and residual saturations

If the capillary number increases, the capillary forces will play less and less role. The behavior of
the fluids will then change from the capillary regime

Drainage

Viscosity ratio : M = ηinjected
ηdisplaced

Capillary number : Ca = vinjectedηinjected
γnw/w

high Ca and small M: Viscous fingering
→ Invasion-percolation
high Ca and high M: Stable displacement
→ anti-DLA
small Ca and high M: Capillary fingering
→ DLA
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The unsaturated porous solid

Transport in unsaturated porous media
Hydrodynamic regimes and residual saturations

If the capillary number increases, the capillary forces will play less and less role. The behavior of
the fluids will then change from the capillary regime

Imbibition

Same domains as for the drainage except a
stable capillary domain at intermediate Ca

Florian Osselin MPPS 36 / 43



The unsaturated porous solid

Transport in unsaturated porous media
Residual saturations and hysteresis

Source: Stanford University

Source : Akbarabadi & Piri 2012

kwr reaches 0 at Sw = Swr
The residual saturation is defined as the saturation at which the considered fluid stops moving in
the porosity. Residual saturation depends particularly on the history of injection and on the
capillary number.
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The unsaturated porous solid

Transport in unsaturated porous media
Residual saturations and hysteresis

kwr reaches 0 at Sw = Swr
The residual saturation is defined as the saturation at which the considered fluid stops moving in
the porosity. Residual saturation depends particularly on the history of injection and on the
capillary number.
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The unsaturated porous solid

Transport in unsaturated porous media
Hysteresis of the residual saturation: resaturation and capillary trapping

The variation of residual saturation is caused by the residual capillary trapping

Residual trapping cannot be explained with rounded pore walls
Instead of cylindrical pore throats and spherical pores, we can used angular shapes such
as triangles and cubes

The residual saturation can be found in the angularity of the pores
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The unsaturated porous solid
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The unsaturated porous solid

Three-phase flow

Usually in oilfields, there is the superposition of oil, water and gas

Very (very) complex behavior is you want to take into account the different regimes

In the Oil & Gas engineering, the channel flow hypothesis is usually assumed

Water is the wetting fluid and fills the small pores
Oil is the intermediate wetting fluid and fills the intermediate pores
Gas is the non-wetting fluid and fills the biggest pores

Transport behavior is then characterized by 3 relative permeability functions depending on the
saturation of each phase

There exists different formulations of these relative permeabilities

The most used is the Stone I model (1970)
It assumes that the wetting (water) and the non-wetting (gas) phases are behaving as in a 2
phase flow

kw,wogr = kw,wor

kg,wogr = kg,gor

ko,wogr = f
(
ko,wor , ko,ogr

)
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The unsaturated porous solid

Interfacial stress and deformation

In the case the interfacial forces cannot be neglected
U(Sw )⇒ U (Sw ,Snw , ϕw , ϕnw )
Let us rewrite the free energy of the skeleton separating each fluid:

fsk = σdε+
∑

J pJdϕJ − φ0 (pnw − pw ) dSw + s : de

We then have the following equations of state:

pJ = ∂fsk
∂ϕJ

and φ0 (pnw − pw ) = − ∂fsk
∂Sw (same equation as previously)

Considering again the decomposition: fsk = f ∗
sk (ε, ϕJ , e, SJ) + φ0U (ϕJ , SJ)

pJ = ∂f ∗
sk

∂ϕJ
+ φ0

∂U
∂ϕJ
⇒ pJ − φ0

∂U
∂ϕJ

= ∂f ∗
sk

∂ϕJ

We define the apparent pore pressure p∗
J as :

p∗J = pJ − φ0 ∂U∂ϕJ
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The unsaturated porous solid

Interfacial stress and deformation

And finally :

dψsk = df ∗
sk − d

(∑
J p∗

J dϕ
)

dψsk = σdε+ s : de −
∑

J ϕJdp∗
J

This is the same expression as before, but replacing pJ by p∗
J .

σ = Kε− bp∗
J

ϕJ = bJε+
∑

I
1

NI,J
p∗
I

sij = 2Geij

The apparent pore pressure is the pressure effectively transmitted by the fluid in the pore
to the solid matrix taking into account the interface effects.

The expression of ∂U
∂ϕJ

is usually difficult to determine and is often neglected.
At 0 fluid pressure, the effect of interfacial tension can deform the sample → prestress
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